Influence of an annealing ambient in postannealing process of $LiCoO_2$ cathodes for rechargeable thin film batteries

Kwang-Soon Ahn, Keun-Man Song, Hyo-Jin Ahn,
Woo-Seong Kim, and Yung-Eun Sung
Dept. of Materials Science & Engineering
Kwangju Institute of Science and Technology
Kwangju, 500-712, S. Korea

Crystalline LiCoO₂ has been widely used as the cathode material in secondary rechargeable lithium batteries[1]. Almost most crystalline cathode films for the thin film batteries have been grown by the sputtering system followed by post-annealing process[2]. However, the effects of annealing ambient of LiCoO₂ cathode during the post-annealing process for rechargeable thin film batteries have not been systematically researched so far. We systematically investigate the effects of annealing ambient during post-annealing process on LiCoO₂ cathode films grown by the sputtering system.

The films grown by RF sputtering system were annealed for 30 min at 650, 750, 800, 850, and 900 °C under Ar or O₂ ambient of 10 mtorr, respectively. Li foil and LiCoO₂ film were used as anode and cathode, respectively. The electrolyte was 1 M LiCF₃SO₃ dissolved in PC+DME (1:2) and all the cells were prepared in a dry room.

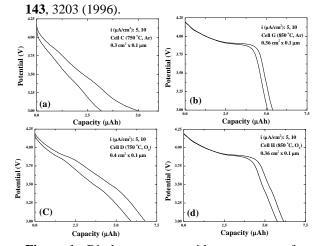
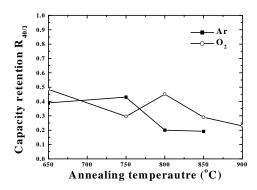

Figure 1 shows the discharge curves with current rate for the LiCoO2 films annealed 750 and 850 °C, respectively, under Ar (a,b) and O_2 (c,d) ambient. Figure 1(a) and (c) show smooth discharge curves without any plateau, indicating that the LiCoO₂ films annealed at 750 °C have amorphous structure. In contrast, fig. 1(b) and (d) show typical discharge curves of crystalline LiCoO2 films, which have the plateaus at 3.93, 4.07, and 4.17 V indicating phase transformation. Figure 1 also shows that crystalline LiCoO2 films have better rate performance than amorphous LiCoO2 films. The LiCoO₂ films annealed at 800 °C showed medium shape between the discharge curves of crystalline and amorphous LiCoO2 films (not shown here), indicating uncompleted crystallization of the LiCoO₂ film. X-ray diffraction data confirmed it. The surface roughness measured by atomic force microscopy (AFM) was rapidly increased at 800 °C.

Figure 2 shows the discharge capacity retention ($R_{40/1}$), ratio of 1 to 40 cycle number, with an annealing temperature. The LiCoO₂ film annealed at 900 °C under Ar ambient was cycled to 10 times.


From above results, post-annealing process under O_2 ambient can accomplish superior long-term cycling performance and thermal stability above 800 °C, compared with that under Ar inert ambient. It may be due to the cathode degradation caused by oxygen out-diffusion from $LiCoO_2$ films annealed at high temperature under Ar inert ambient. Surface roughening above 800 °C increased the initial specific capacity but caused worse long-term cycling performance.

References

- [1] M.Winter, J.O.Besenhard, M.E.Spahr, and P.Novak, Adv. Mater. **10**, 725 (1998).
- [2] B.Wang, J.B.Bates, F.X.Hart, B.C.Sales, R.A.Zuhr, and D.Robertson, J. Electrochem. Soc.

Figure 1. Discharge curves with current rates for LiCoO₂ films annealed at 750 and 850 $^{\circ}$ C, respectively, under Ar (a,b) and O₂ (c,d) ambient.

Figure 2. Discharge capacity retention $(R_{40/1})$ for the LiCoO₂ films with the annealing temperature.